
plcLib Reference Manual
Simple PLC-style programming in JavaScript and C++.

Version 2.0 Beta 6 | Last updated 23/4/23 by WD

Contents
Command Reference .. 2

Input and Output .. 2

Analogue Comparison... 3

Single Bit Logical ... 4

Logical Function Blocks ... 5

Latches .. 6

Timers ... 8

Waveforms .. 9

Pulses ... 11

Counters ... 13

Shift Registers .. 15

Variables ... 17

Stacks ... 18

States ... 20

Transitions and Events .. 23

Timing Diagrams (JavaScript only) ... 26

Default Settings and Configuration Options ... 26

JavaScript IDE and Simulator .. 26

Installation of C++ Library .. 27

Default Pin Allocations ... 27

Custom Pin Configurations ... 27

Positive and Negative Logic ... 29

Loading a Sketch at Startup .. 31

Program Features .. 32

Scan Cycle Operation... 32

Debugging Sketches ... 34

Loading and Saving User Sketches .. 35

Extending the System .. 36

Adding C++ Specific Code in the JavaScript IDE .. 36

Adding New Features .. 37

Licensing and Disclaimer ... 38

Acknowledgements .. 38

Page 2

Command Reference
The following sections give the available commands and syntax of plcLib commands, organised into related
functional groups. Readers may also study associated examples from the Web IDE, which illustrate their use.

Many of the examples in this guide make use of timing diagrams to illustrate their operation. These may be
produced with the aid of the logVars command, as described in the Timing Diagrams section.

Input and Output

Output and input commands write and read information from/to the microcontroller, respectively. Input
commands return a value to the calling command and also update the global scanValue variable. This in turn
enables the value to be processed by subsequent commands. Digital output commands send a 0/1 value, loaded
from scanValue, to the specified destination. Hence a bare minimum digital I/O example consists of a digital input
command (e.g. din) immediately followed by a digital output (e.g. dout), as shown in Listing 1.

// Bare Minimum - Single bit digital input and output

function setup() {

}

function loop() {

 din(X0); // Read digital input X0

 dout(Y0); // Send to digital output Y0

}

Listing 1. Single bit digital input and output (Source: IO > BareMinimum).

A sample timing diagram is shown in Figure 1.

Figure 1. A sample timing diagram for Listing 1, created using the logVars command.

The analogue input command (ain) reads the associated analogue to digital converter (ADC). A value in the range
0-1023 is produced by the default 10-bit ADC and stored in the scanValue variable. This value may, for example, be
compared against a second analogue value or variable by using an analogue comparison command. An analogue
value (range 0-1023) may also be automatically scaled and sent to a PWM-enabled output (range 0-255) by using
the pout command, as shown in Listing 2.

// PWM - Analogue control of a PWM output

function setup() {

}

function loop() {

 ain(AD0); // Read analogue input AD0

 pout(Y0); // Send to output Y0 as PWM waveform

}

Listing 2. Analogue control of a PWM output (Source: IO > PWM).

Page 3

Command Function Returns
din(pin1|entity2); Single bit digital input scanValue3 = 0|1
dinNot(pin|entity); Single bit digital input (inverted) scanValue = 1|0 (inverted)
dout(pin|entity); Single bit digital output scanValue = 0|1
doutNot(pin|entity); Single bit digital output (inverted) scanValue = 1|0 (inverted)
ain(pin|entity); Analogue input scanValue = 0-1023 (10-bit)
pout(pin|entity); PWM output (0-255) scanValue = 0-1023

Table 1. Input and output commands (C++, JavaScript).

Related Examples:

• IO > BareMinimum
• IO > DigitalInputOutput

• IO > PWM

Given that the scanValue variable can hold both digital or analogue values (for example 0/1 or 0-1023), it is
important that you use sensible combinations of commands in ‘input-process-output’ program branches (AKA
ladder logic ‘rungs’). For example, an analogue input command (ain) followed immediately by a digital output
(dout) would not make sense, unless an intermediate command was used, such as an analogue comparison (e.g.
compareGT).

Advanced users may extend the default I/O capabilities by adding 3rd party libraries, either directly to C++ code, or
through the use of escape sequences in JavaScript. This could for example enable the value stored in the scanValue
variable to be scaled by the Arduino map command and used to control an attached servo, as shown in the
3rdParty > Servo example.

Analogue Comparison

Analogue comparison commands compare a previously inputted analogue value with a second supplied value. The
returned value is 1 if the test is true and 0 if it is false. An example is given in Listing 3.

// Greater than

function setup() {

}

function loop()

{

 ain(AD0); // Read analogue input AD0

 compareGT(AD1); // AD0 > AD1 ?

 dout(Y0); // Y0 = 1 if AD0 > AD1, Y0 = 0 otherwise

}

Listing 3. Comparing two analogue input values (Source: Analogue > GreaterThan).

1 A pin number refers to a physical pin on the microcontroller.
2 An entity is a named identifier which may refer to either a variable (such as an Auxiliary), or an object property
(such as the .value() property of an object).
3 The scanValue variable holds the result of the previous command (if any) and may be updated with the result of
the current command. It holds the most recent result and may also maintain a running total (AKA an ‘accumulator’)
for certain mathematical or logical operations. As a rule of thumb, input commands update scanValue, based on
their result, while output commands expect scanValue to have been modified by the result of the previous
command from the same program branch. A series of ‘implicit if’ statements may be created by placing two or more
statements in sequence, in the same branch, where the current statement will conditionally execute, based on the
scanValue result from the previous command. The scanValue variable is reused by the next program branch, which
will typically start afresh with an input command.

Page 4

Command Function Returns
compareGT(pin|entity); Test if previous value (scanValue) > supplied value scanValue = 0|1
compareLT(pin|entity); Test if previous value (scanValue) < supplied value scanValue = 0|1

Table 2. Analogue comparison commands (C++, JavaScript).

Related Examples:

• Analogue > GreaterThan

• Analogue > GreaterThanThreshold
• Analogue > LessThan
• Analogue > LessThanThreshold

• Analogue > MaxMin

Single Bit Logical

Single bit logical commands perform the specified Boolean operation between the previous binary value (stored in
scanValue) and the binary value supplied with the command. The scanValue variable is updated with the result.

Command Function Returns
andBit(pin|entity); Boolean AND of scanValue and supplied value scanValue = 0 | 1
andNotBit(pin|entity); Boolean AND of scanValue and supplied value (inverted)4 scanValue = 0 | 1
orBit(pin|entity); Boolean OR of scanValue and supplied value scanValue = 0 | 1
orNotBit(pin|entity); Boolean OR of scanValue and supplied value (inverted) scanValue = 0 | 1
xorBit(pin|entity); Boolean XOR of scanValue and supplied value scanValue = 0 | 1
xorNotBit(pin|entity); Boolean XOR of scanValue and supplied value (inverted) scanValue = 0 | 1

Table 3. Single Bit Logical Commands (C++, JavaScript).

The logical operation may be repeated multiple times if more than two inputs are required, in which case
scanValue will act as an accumulator. A simple example is given in Listing 4.

// 3-input AND using repeated single bit AND commands

function setup() {

}

function loop(){

 din(X0); // Read digital input X0

 andBit(X1); // AND with X1

 andBit(X2); // AND with X2

 dout(Y0); // Send result to Y0

}

Listing 4. Performing a 3-bit Boolean by using repeated single bit AND commands (Source: Logic > RepeatedAnd).

The example timing diagram of Figure 2 confirms the output Y0 (shown in red) is enabled only when inputs X0 , X1,
and X2 are simultaneously active.

Figure 2. A sample timing diagram for the logical AND operation of Listing 4 (created using the logVars command).

4 Inverting the supplied value in a Boolean logic operation is equivalent to an inversion operation on the input pin
(often shown with a circle on the input pin of the logic gate symbol).

Page 5

Related Examples:

• Logic > AndOrXorNot

• Logic > InvertedInputLogic
• Logic > NandNorXnor

• Logic > RepeatedAnd

Logical Function Blocks

Logical function block commands perform combinational logic operations. Commands accept 2-4 inputs, with the
exception of the notFB command which performs a logical inversion of a single input. The result is stored in the
specified FunctionBlock variable (C++) or FunctionBlock object (JavaScript), and the scanValue variable is updated.

The FunctionBlock object/variable must first be created, as shown in Tables 4 (JavaScript) and 5 (C++). (The
JavaScript syntax is automatically converted to the C++ equivalent by the code generation feature of the Web IDE.)

Command Function Returns
fbName5 = new FunctionBlock6(); Create FunctionBlock. Object fbName created

Table 4. Creating a new FunctionBlock object (JavaScript).

Command Function Returns
FunctionBlock fbName; Create FunctionBlock variable. Variable fbName created

Table 5. Creating a new FunctionBlock variable (C++).

Available logical function block commands are given in Table 6.

Command Function Returns
andFB(FbName,
pin1|entity1,
pin2|entity2, …);

Boolean AND of scanValue and supplied values
(2-4 allowed)

FbName = 0 | 1
(scanValue is also updated)

nandFB(FbName,
pin1|entity1,
pin2|entity2, …);

Boolean NAND of scanValue and supplied
values (2-4 allowed)

FbName = 0 | 1
(scanValue is also updated)

orFB(FbName,
pin1|entity1,
pin2|entity2, …);

Boolean OR of scanValue and supplied values
(2-4 allowed)

FbName = 0 | 1
(scanValue is also updated)

norFB(FbName,
pin1|entity1,
pin2|entity2, …);

Boolean NOR of scanValue and supplied values
(2-4 allowed)

FbName = 0 | 1
(scanValue is also updated)

xorFB(FbName,
pin1|entity1,
pin2|entity2, …);

Boolean XOR of scanValue and supplied values
(2-4 allowed)

FbName = 0 | 1
(scanValue is also updated)

xnorFB(FbName,
pin1|entity1,
pin2|entity2, …);

Boolean XNOR of scanValue and supplied
values (2-4 allowed)

FbName = 0 | 1
(scanValue is also updated)

notFB(FbName,
pin|entity);

Boolean Not of scanValue and supplied value FbName = 0 | 1
(scanValue is also updated)

Table 6. Logical function block commands (C++, JavaScript).

An example sketch is given in Listing 5.

5 The label FbName should be replaced with your function block name.
6 Function blocks are created as FunctionBlock objects (‘new’ keyword) in JavaScript, but as FunctionBlock
variables in C++.

Page 6

// 4 input OR gate Function Block

OR0 = new FunctionBlock();

function setup() {

}

function loop() {

 orFB(OR0, X0, X1, X2, X3); // 2-4 inputs allowed

 din(OR0); // Read OR0.value

 dout(Y0); // Send result to Y0

}

Listing 5. Using a logical function block to perform a 4-input Boolean OR (Source adapted from: Logic > OrNor).

Figure 3 shows a sample timing diagram based on Listing 5. This demonstrates that the output of an inclusive-OR
function block is high (true) if one or more of the inputs is high.

Figure 3. A timing diagram based on the inclusive-OR function block of Listing 5 (produced using the logVars

command).

Related Examples:

• FB > AndNand
• FB > OrNor

• FB > XorXnor
• FB > NetworkAnd

• FB > NetworkNotAndOr

Latches

The setL and resetL commands force the specified output to change to 1 or 0, respectively when the result from a
previous command (such as din) causes scanValue to change to a 1. The output will remain at the specified value
(is ‘latched’), even after the input is removed. A matched pair of setL and resetL commands is needed to create a
set-reset latch, as shown in Listing 6.

// Using separate setL and resetL Commands

function setup() {

}

function loop()

{

 din(X0); // Read switch connected to digital input X0 (Set input)

 setL(Y0); // Set latched output Y0 to 1 if X0 = 1,

 // leave Y0 unaltered otherwise

 din(X1); // Read switch connected to digital input X1 (Reset input)

 resetL(Y0); // Reset latched output Y0 to 0 if X1 = 1,

 // leave Y0 unaltered otherwise

}

Listing 6. Using setL and resetL commands to create a set-reset latch (Source: Latch > SetResetCommands).

A sample timing diagram is given in Figure 4, based on Listing 6.

Page 7

Figure 4. Using setL and resetL commands to enable or disable an output.

The latch command effectively combines the setL and resetL commands, to create a full set-reset latch. The
specified output changes to 1 when the result from a previous command makes scanValue change to a 1 or remain
there. The output will remain at this value, even after the input is removed. A momentary 1 on the reset input
causes the output value to change to 0 (or remain there), as shown in Listing 7.

// Latch Command

function setup() {

}

function loop()

{

 din(X0); // Read switch connected to digital input X0 (Set input)

 latch(Y0, X1); // Latch, Q = Output Y0, Reset = Input X1

 din(Y0); // Read Q digital output Y0 and generate NotQ on Output Y1

 doutNot(Y1); // (These two lines are optional)

}

Listing 7. Using the latch command to create a set-reset latch (Source: Latch > LatchCommand).

A key characteristic of a latch is how it behaves when the Set and Reset inputs are applied at the same time. The
Latch command is designed to be ‘reset dominant’, so Set = Reset = 1 causes the output to be disabled. In the case
of linked setL and resetL commands with outputs connected directly to an output pin, then each command will
directly update the output, in sequence. This will generate a pulse waveform, when Set and Reset are
simultaneously applied – which is typically not desired! This behaviour may be overcome by outputting firstly to
an Auxiliary variable and then subsequently updating the output pin, as shown in the Latch >
SetResetCommandsAuxiliary example. It is possible to design latches which are either set- or reset-dominant
by using this approach.

A summary of latch related commands is given in Table 7.

Command Function Returns
setL(outPin|outEntity); Output value changes to 1 if the input (read

from scanValue) is momentarily 1. No change
to the output if the input = 0.

Output value = 0|1
(scanValue is also updated)

resetL(outPin|outEntity); Output value changed to 0 if if the input (read
from scanValue) is momentarily 1. No change
to the output if the input = 0.

Output value = 0|1
(scanValue is also updated)

latch(outPin|outEntity,
resetPin|resetEntity);

Output value changed to 1 if scanValue is 1,
changed to 0 if Reset value is 1, no change
otherwise.

Output value = 0|1
(scanValue is also updated)

Table 7. Latch commands (C++, JavaScript).

Related Examples:

• Latch > LatchCommand
• Latch > SetResetCommands

• Latch > SetResetCommandsAuxiliary

Page 8

• Latch > SetResetEdgeTriggered

Timers

Timer commands are used to create a delayed response to a change in an input signal. For example, an ‘on-delay
timer’ delays turning an output on, while an ‘off-delay timer’ delays turning an output off. The first step is to create
the timer, as explained in Tables 8 and 9, for JavaScript and C++ respectively.

Command Function Returns
TmrName7 = new Timer8(); Create Timer and initialise elapsed

time value to zero.
Object TmrName created
and initialised.

Table 8. Creating a new Timer object (JavaScript).

The JavaScript syntax of Table 8 is automatically converted to that of Table 9 by the code generation feature of the
Web IDE.

Command Function Returns
Timer TmrName; Create Timer variable and initialise

elapsed time to zero.
Variable TmrName created

Table 9. Creating a new Timer variable (C++).

Available Timer commands are given in Table 10.

Command Function Returns
timerOn(TmrName, period); Output value = 1 if previous input (scanValue)

is continuously active for more than period
milliseconds. Output value = 0 otherwise.

Output value = 0|1
(scanValue is also updated)

timerOff(TmrName,
period);

Output value = 1 after the input is enabled,
then stays high for period milliseconds after
the input (scanValue) is removed.

Output value = 0|1
(scanValue is also updated)

timerPulse(TmrName,
period);

Activates an output for a fixed period after a
momentary input is applied.

Output value = 0|1
(scanValue is also updated)

Table 10. Timer commands (C++, JavaScript).

The output of an on-delay timer goes high if the input is continuously active for a time greater than the period in
milliseconds, and then goes low immediately if the input is disabled. A simple example is given in Listing 8, while
the corresponding timing diagram is shown in Figure 5.

// Turn-on Delay

TIMER0 = new Timer();

function setup() {

}

function loop() {

 din(X0); // Read Input 0

 timerOn(TIMER0, 2000); // 2 second delay

 dout(Y0); // Output to Output 0

}

Listing 8. Using the timerOn command to create an on-delay timer (Source adapted from: Delays > TimerOn).

7 The label TmrName should be replaced with your Timer name.
8 Timers are created as objects (‘new’ keyword) in JavaScript, but as Timer variables in C++. The associated timer
command uses the Timer object/variable to hold the elapsed time in milliseconds since the timer was enabled.

Page 9

Figure 5. An example timing diagram for the on-delay timer of Listing 8.

On-delay timers with periods in tens of milliseconds are commonly used for switch debounce purposes. In this
scenario, the brief physical bouncing of the switch contacts is ignored, which in turn greatly reduces the chance of a
single switch press causing multiple triggering of a connected system, such as a counter. See the Delays >
SwitchDebounce example for more details.

An off-delay timer is immediately enabled by its input, but delays turning off until it has been continuously
disabled for period milliseconds. An off-delay timer example is given in Listing 9, while a corresponding timing
diagram is given in Figure 6.

// Turn-off Delay

TIMER0 = new Timer();

function setup() {

}

function loop() {

 din(X0); // Read Input 0

 timerOff(TIMER0, 2000); // 2 second turn-off delay

 dout(Y0); // Output to Output 0

}

Listing 9. Using the timerOff command to create an off-delay timer (Source: Delays > TimerOff).

Figure 6. An example timing diagram for the off-delay timer of Listing 9.

It is also possible to generate a fixed width pulse by using the timerPulse command, whose output is activated for
a fixed period after being momentarily enabled. The method of use is otherwise identical to that of the on-delay
timer, discussed earlier.

Related Examples:

• Delays > TimerOn
• Delays > TimerOff

• Delays > DelayedPulse
• Delays > SwitchDebounce
• Delays > FixedPulse

Waveforms

The timerCycle command produces a repeating pulse waveform, when enabled by the previous command (via
the scanValue variable), otherwise the command returns 0. The resulting pulse waveform is typically sent to an
output pin by a following dout command.

Page 10

The first step is to create the Waveform object, as shown by Table 11, for JavaScript and Table 12 for C++.

Command Function Returns
WvName9 = new Waveform10(); Create Waveform object and initialise

elapsed time values to zero.
Object WvName created

Table 11. Creating a new Waveform object (JavaScript).

The syntax of Table 11 is automatically converted to that of Table 12 by the code generation feature of the Web-
based IDE.

Command Function Returns
Waveform WvName; Create Waveform object and initialise

elapsed time values to zero.
Object WvName created

Table 12. Creating a new Waveform object (C++).

Table 13 gives the syntax of the timerCycle command.

Command Function Returns
timerCycle(WvName,
lowTime, highTime);

Creates a repeating pulse waveform, when
enabled by the previous command.

Output value = 0|1
(scanValue is also updated)

Table 13. Using timerCycle to create repeating pulse waveforms.

The example of Listing 10 creates repeating pulse waveform of period 1 second (low for 0.9 seconds, then high for
0.1 seconds), which is enabled by input X0, and with the output sent to output Y0.

// Pulsed output

// Variables:

WAVE0 = new Waveform(); // Waveform for timerCycle

function setup() {

}

function loop() {

 din (X0); // Read Enable input X0 (1 = enable)

 timerCycle(WAVE0, 900, 100); // Repeating pulse, low 0.9 s, high 0.1 s

 // (hence period = 1 second)

 dout(Y0); // Send pulse waveform to output Y0

}

Listing 10. Using the timerCycle command to create a repeating pulse waveform (Source: Waveforms >
PulsedOutput).

An example timing diagram for Listing 8 is given in Figure 7.

Figure 7. A sample timing diagram for the timerPulse example of Listing 10.

Related Examples:

• Waveforms > PulsedOutput
• Waveforms > PulsedOutputManual

9 The label WvName should be replaced with your Waveform name.
10 Waveforms are created as objects in JavaScript and C++. The associated timerCycle command uses the
Waveform object to hold the elapsed time for the low and high portions of the repeating pulse, measured in
milliseconds.

Page 11

• Waveforms > PulsedOutputVariables

Pulses

A Pulse object may be used to create brief (single scan cycle) pulses, triggered by the rising or falling edges of an
input signal. This is sometimes called a ‘one shot’. The resulting single scan cycle pulse may then be used to trigger
following actions, which are intended to occur once only.

As with Waveforms and Timers, the first step is to create the Pulse object, as shown in Tables 14 and 15, for
JavaScript and C++ respectively.

Command Function Returns
PlsName11 = new Pulse12([0|1]); Create new Pulse object. Object PlsName created.

The default polarity is
positive or rising, but this
may be explicitly defined
as rising (0) or falling (1).

Table 14. Creating a new Pulse object (JavaScript).

The syntax of Table 14 is automatically converted to that of Table 15 by the code generation feature of the Web-
based IDE.

Command Function Returns
Pulse PlsName[(0|1)]; Create new Pulse object. Object PlsName created.

The default polarity is
positive or rising, but this
may be explicitly defined as
rising (0) or falling (1).

Table 15. Creating a new Pulse object (C++).

The Pulse object provides several object-oriented methods, as shown in Table 16.

Parameter / Method Action Returns
PlsName.inClock(); Connects the previous result (read from

scanValue) to the input clock of the Pulse.

PlsName Returns true (1) to the calling command if the
default edge type is detected, as specified at
pulse creation.

Returns 1 to the calling
command if default edge
detected, 0 otherwise.

PlsName.rising(); Enables following commands in the same
branch if the rising edge of the associated
input has been detected in the current scan
cycle.

Output value = 1 if rising
edge detected, 0 otherwise
(scanValue is also updated).

PlsName.falling(); Enables following commands in the same
branch if the falling edge of the associated
input has been detected in the current scan
cycle.

Output value = 1 if falling
edge detected, 0 otherwise
(scanValue is also updated).

PlsName.expired(); Clears the rising and falling edge detection
flags for the remainder of the current scan-
cycle (useful with mutually exclusive sets of
actions).

The .rising()
and .falling() methods
return 0 for the remainder of
the current scan cycle.

Table 16. Pulse object command parameters and methods.

11 The label PlsName should be replaced with your Pulse name.
12 Pulses are created as objects in both JavaScript and C++.

Page 12

The example of Listing 11 illustrates the generation of one-shot (single scan cycle) pulses on outputs Y0 and Y1,
based on the rising and falling edge, respectively, of input X0.

// One Shot Pulse - Single scan cycle pulse

myPulse = new Pulse(); // Create object

function setup() {

}

function loop() {

 din(X0); // Read digital input X0

 myPulse.inClock(); // Connect to pulse object

 myPulse.rising(); // Detect rising edge

 dout(Y0); // Send to digital output Y0

 myPulse.falling(); // Detect falling edge

 dout(Y1); // Send to digital output Y1

 //$delay(200); // Slow down pulse for viewing in C++

}

Listing 11. Using a Pulse object to detect rising and falling edges of an input (Source: Waveforms > PulseOneShot).

Notice that an escape sequence (//$) is used towards the end of the above example, to automatically insert a 0.2
second delay into the C++ version, hence making the pulses visible. This line is ignored by the JavaScript version,
but should be removed once debugging of C++ code is complete.

A sample timing diagram is given in Figure 8.

Figure 8. Using a Pulse to detect rising and falling edges of an input signal.

It is also possible to use the Pulse object itself as a parameter in other plcLib commands, making use of the default
pulse polarity specified when the Pulse object was created. The example of Listing 12 creates two Pulse objects,
with P0 defaulting to a positive edge transition and P1 a negative equivalent. Following lines link the positive going
pulse on X0 to digital output Y0, while the falling edge of Pulse P1 is connects the negative edge of X1 to digital
output Y1. Pulse objects P0 and P1 are logically combined using a Boolean OR function block (orFB), with the
output sent to digital output Y2.

// One Shot Pulse - Single scan cycle pulse using default transitions

P0 = new Pulse(0); // Create 1st pulse object, default = 0 to 1

P1 = new Pulse(1); // Create 2nd pulse object, default = 1 to 0

OR0 = new FunctionBlock(); // Create OR FB variable

function setup() {

}

function loop() {

 din(X0); // Read digital input X0

 P0.inClock(); // Connect to pulse object P0

 din(X1); // Read digital input X1

 P1.inClock(); // Connect to pulse object P1

 din(P0); // Detect rising edge of P0 (from default)

 dout(Y0); // Send to digital output Y0

Page 13

 din(P1); // Detect falling edge of P1 (from default)

 dout(Y1); // Send to digital output Y1

 orFB(OR0, P0, P1); // Combine pulses

 din(OR0); // Read OR0 result

 dout(Y2); // Send combined result to Y2

 //$delay(200); // Slow down pulse for viewing in C++

}

Listing 12. Solving complex logic with user variables (Source: Variables > ComplexLogic).

Related Examples:

• Waveforms > PulseOneShot
• Waveforms > PulseOneShotDefault
• Latch > SetResetEdgeTriggered

See also examples in the Apps and SFC folders.

Counters

Counters are used to count the number of events that have occurred. At its simplest, the counter activates an
output to indicate that the count is complete, once the specified number of events have been recorded. The first
step is to create the Counter object, as given in Tables 17 and 18.

Command Function Returns
CtrName13 = new
Counter14(maxValue[,
direction]);

Create new Counter object. Defaults to
an up counter if direction is 0 or not
supplied. Acts as a down counter if
direction = 1.

Object CtrName created.
Starting value = 0 for an up
counter. Starting value =
maxValue for a down
counter.

Table 17. Creating a new Counter object (JavaScript).

The syntax of Table 17 is automatically converted to that of Table 18 by the code generation feature of the Web-
based IDE.

Command Function Returns
Counter CtrName(maxValue[,
direction]);

Create new Counter object. Defaults to an
up counter if direction is 0 or not
supplied. Acts as a down counter if
direction = 1.

Object CtrName created.
Starting value = 0 for an up
counter. Starting value =
maxValue for a down
counter.

Table 18. Creating a new Counter object (C++).

Available counter methods are given in Table 19.

Method Action Returns
CtrName.preset(); Sets the value property of the counter to the

maximum, if enabled by the previous
command. Hence the .upperQ() method
will return 1 or true.

value property = maxValue.

CtrName.clear(); Sets the value property of the counter to the
minimum (0), if enabled by the previous

value property = 0.

13 The label CtrName should be replaced with your Counter name.
14 Counters are created as objects in both JavaScript and C++.

Page 14

command.. Hence the .lowerQ() method
will return 1 or true.

CtrName.setValue(myCount); Sets the value property of the counter to
myCount (so specifies the start count of the
counter).

value property = myCount.

CtrName.upperQ(); Tests whether the counter has reached its
maximum value.

Returns 1 if value =
maxValue (scanValue is also
updated).

CtrName.lowerQ(); Tests whether the counter has reached its
minimum value (0).

Returns 1 if value = 0
(scanValue is also updated).

CtrName.value(); Returns the current counter value. Returns the current value
property (useful for
debugging).

CtrName.countUp(); Counts up by one on the rising edge of the
previous input (read from scanValue).

CtrName.countDown(); Counts down by one on the rising edge of
the previous input (read from scanValue).

Table 19. Counter methods.

In the case of an up-counter, the initial count value is set to 0 when the counter is created, while the final value is
set to the specified maximum value. The counter then counts up by using the .countUp() method, which is turn
driven by the preceding input signal. The .upperQ() method becomes true once the internal count value reaches
the specified maximum value. This process is illustrated by Listing 12.

// Up Counter - Counts 5 pulses on Input X0 with switch debounce

ctr = new Counter(5); // Final count = 5, starting at zero

TIMER0 = new Timer(); // Switch debounce timer

function setup() {

}

function loop() {

 din(X0); // Read digital input X0

 timerOn(TIMER0, 10); // 10 ms switch debounce delay

 ctr.countUp(); // Count up

 din(X1); // Read digital input X1

 ctr.clear(); // Clear counter (counter at lower limit)

 din(X2); // Read digital input X2

 ctr.preset(); // Preset counter (counter at upper limit)

 ctr.lowerQ(); // Display Count Down output on Y0

 dout(Y0);

 ctr.upperQ(); // Display Count Up output on Y1

 dout(Y1);

 // console.log(ctr.value()); // Optionally display current count

 //$delay(200); // 0.2 second loop delay in C++ for debugging purposes

}

Listing 12. An up counter which counts from 0 to 5 (Source adapted from: Counters > CountUp).

The example of Listing 12 also has clear and preset inputs, which are connected to inputs X1 and X2 respectively.
These make use of the similarly named .clear() and .preset() methods. These methods set the internal
counter value to be either 0 or the maximum (if enabled by the previous command), hence also updating outputs
Y0 and Y1 via the .lowerQ() and .upperQ() methods, respectively.

A sample timing diagram is shown in Figure 9, based on the up counter of Listing 12.

Page 15

Figure 9. A sample timing diagram based on the up counter of Listing 12.

Given that counters fundamentally exist in two states – finished or not finished – in terms of the counter output, it is
sometimes useful to view the current internal count value, for debugging purposes. This may be achieved by calling
the .value() method of the counter, from within a debugging command such as console.log() (JavaScript) or
Serial.println() (C++), as shown towards the end of Listing 12, above.

A common issue with counters, particularly those driven by input switches, is switch bounce. This may be
overcome by the addition of a switch debounce delay, as given in the following examples.

Related Examples:

• Counters > CountUp
• Counters > CountDown
• Counters > CountUpDown

• Counters > CountUpDownCustomStart
• Counters > DualCounters

• Counters > CountUpDownLCD

Shift Registers

Shift registers allow a binary bit pattern to be first loaded into a register, which may then to be moved to the left or
right. In a shift register the outgoing bit is discarded. However, the outgoing bit may optionally be fed back to the
start, which then allows the original bit pattern to be rotated to the left or right. The register has a width of 16-bits,
with available bit positions in the range 0-15. The first step is to create the shift register object, as given in Tables
20 and 21.

Command Function Returns
SfrName15 = new Shift16(value); Create new shift register object with

the specified initial 16-bit value.
Object SfrName created.

Table 20. Creating a new shift register object (JavaScript).

The syntax of Table 20 is automatically converted to that of Table 21 by the code generation feature of the Web-
based IDE.

Command Function Returns
Shift SfrName(); Create new shift register object with the

specified initial 16-bit value.
Object SfrName created.

Table 21. Creating a new shift register object (C++).

Available shift register methods are given in Table 22.

Method Action Returns
SfrName.bitValue(position); Reads the binary value of the bit at the

specified bit position (0-15).
Returns 1/0 (scanValue
is also updated).

15 The label SfrName should be replaced with your Shift Register name.
16 Shift registers are created as objects in both JavaScript and C++.

Page 16

SfrName.value(); Reads the value of the shift register as
a 16-bit number (0-65,535).

Returns the value of the
shift register (scanValue
is also updated).

SfrName.reset(); Clears the shift register to 0.
SfrName.inputBit(); Configures the bit value to be shifted-

in to the shift register, based on the
result of the previous command (read
from scanValue).

SfrName.shiftLeft(); Shifts the register one position to the
left, replacing the rightmost bit with
the value configured using
the .inputBit method.

SfrName.shiftRight(); Shifts the register one position to the
right, replacing the leftmost bit with
the value configured using
the .inputBit method.

Table 22. Shift register methods.

The example of Listing 13 creates a shift register with an initial value of 0x1111 (0001 0001 0001 0001 binary),
which is then shifted to the left on each rising edge of input X1.

// Shift register: Shift data to the left

shift1 = new Shift(0x1111);// Create a shift register with initial value 0x1111
TIMER0 = new Timer(); // Define variable used for switch debounce

function setup() {
}

function loop() {

 din(X0); // Read input to shift register from X0
 shift1.inputBit();

 din(X1); // Shift Left on rising edge of input X1
 timerOn(TIMER0, 10); // 10 ms switch debounce delay on X1
 shift1.shiftLeft();

 din(X2); // Reset the shift register value to zero if X2 = 1
 shift1.reset();

 shift1.bitValue(3); // Send bit 3 value to output Y3
 dout(Y3);

 shift1.bitValue(2); // Send bit 2 value to output Y2
 dout(Y2);

 shift1.bitValue(1); // Send bit 1 value to output Y1
 dout(Y1);

 shift1.bitValue(0); // Send bit 0 value to output Y0
 dout(Y0);
}

Listing 13. A simple shift register example which shifts data to the left (Source: ShiftRotate >ShiftLeft).

A typical timing diagram is given in Figure 10, based on the shift register of Listing 13.

Page 17

Figure 10. An example timing diagram based on the shift register of Listing 13.

A common issue with shift registers, particularly those driven by input switches, is switch bounce. This may be
overcome by the addition of a switch debounce delay, as given in the following examples.

Related Examples:

• ShiftRotate > RotateLeft
• ShiftRotate > RotateRight

• ShiftRotate > ShiftLeft
• ShiftRotate > ShiftLeftDebug
• ShiftRotate > ShiftRight

• ShiftRotate > ShiftRightCascaded

Variables

General purpose user variables or auxiliaries17 may be used for temporary data storage. This is in addition to the
data values associated with physical inputs, outputs and the data objects (e.g. counters, timers and shift registers).
Commands may write to or read from these user variables in the same way as to physical outputs or inputs,
respectively. Applications of Auxiliaries include: -

• buffering inputs and outputs to avoid the possibility of the same input or output being read from or
written to more than once in a single scan cycle.

• Using variables to hold intermediate results of complex calculations. (See also Stacks, in the next section.)

Each variable is stored internally as a 32-bit unsigned integer, enabling it to hold either Boolean true/false (1/0)
values, or positive integer numbers, depending on the application18.

User variables or Auxiliaries may be created in both JavaScript and C++, as given in Tables 23 and 24, respectively.

Command Function Returns
varName19 = new
Auxiliary20([value]);

Create new user variable. Variable varName is created
and optionally allocated an
initial value.

Table 23. Creating a new user variable (JavaScript).

The syntax of Table 23 is automatically converted to that of Table 24 by the code generation feature of the Web-
based IDE.

17 Other names include auxiliary relays, internal relays or memory bits.
18 Care is needed, to ensure that any associated command sequences are compatible, given that the library does not
perform any form of type checking.
19 The label varName should be replaced with your variable name.
20 Auxiliaries are created as simple objects in JavaScript and as 32-bit integers in C++.

Page 18

Command Function Returns
Auxiliary varName [= value]; Create new user variable. Variable varName is created

and optionally allocated an
initial value.

Table 24. Creating a new user variable (C++).

Listing 14 demonstrates the use of a user variable, or auxiliary, as temporary storage in the solution of a multiple
branch combinational logic circuit.

// Complex Logic

AUX0 = new Auxiliary();

function setup() {

}

function loop() {

 // Solve first branch

 din(X0); // Read input X0

 andNotBit(X1); // AND with inverted input X1

 dout(AUX0); // Use auxiliary variable AUX0 to store first branch result

 // Solve second branch

 din(X2); // Read input X2

 andBit(X3); // AND with input X3

 orBit(AUX0); // OR with result from first branch (AUX0)

 dout(Y0); // Send result to output Y0

}

Listing 14. Solving complex logic with user variables (Source: Variables > ComplexLogic).

Stacks

The stack feature implements one or more last-in first-out (LIFO) storage areas, with each ‘storage level’ holding a
single bit. Stacks are useful for storing intermediate results of binary calculations, including the solution of complex
combinational logic circuits. Each stack is 1-bit wide, with a depth of 32-bits. Stacks are created as objects in both
JavaScript and C++, as given in Tables 25 and 26, respectively.

Command Function Returns
StkName21 = new Stack22(); Create new Stack object. Object StkName created.

Table 25. Creating a new Stack object (JavaScript).

The syntax of Table 23 is automatically converted to that of Table 24 by the code generation feature of the Web-
based IDE.

Command Function Returns
Stack StkName; Create new Stack object. Object StkName created.

Table 26. Creating a new Stack object (C++).

Available stack-related methods are given in Table 27.

Method Action Returns
StkName.push(); Places the previous binary result (from

scanValue) onto the stack.

StkName.pop(); Remove the top value from the stack,
updating scanValue with the result.

scanValue = 0/1.

StkName.orBlock(); Remove the top value from the stack,
performing a logical OR operation with the

scanValue = 0/1.

21 The label StkName should be replaced with your Stack name.
22 Stacks are created as objects in both JavaScript and C++.

Page 19

result of the previous command (from
scanValue). The scanValue variable is
updated with the result.

StkName.andBlock(); Remove the top value from the stack,
performing a logical AND operation with
the result of the previous command (from
scanValue). The scanValue variable is
updated with the result.

scanValue = 0/1.

StkName.value(); Returns the current value of the stack as a
32-bit unsigned number (useful for
debugging).

Returns the stack as a 32-
bit binary number
(scanValue is also updated).

Table 27. Available stack-related methods.

The example of Listing 15 is based on two pairs of parallel switches (X0 in parallel with X1, plus X2 in parallel with
X3, both of which are equivalent to OR). These are then connected in series (equivalent to AND), with the
intermediate result from the first OR command temporarily stored on a stack.

// AND Block

stack1 = new Stack(); // Create a single-bit stack with 32 levels

function setup() {

}

function loop() {

 // Calculate first branch

 din(X0); // Read switch connected to input X0

 orBit(X1); // Logical OR with input X1

 stack1.push(); // Push temporary result onto the stack

 // Calculate second branch

 din(X2); // Read switch connected to input X2

 orBit(X3); // Logical OR with input X3

 stack1.andBlock(); // Merge series branches using Block AND

 dout(Y0); // Send result to output Y0

}

Listing 15. Using a Stack to solve a complex combinational logic network (Source: Latch > AND Block).

The timing diagram of Figure 11 shows a typical output based on Listing 14.

Figure 11. A sample output from the complex combinational logic system of Listing 14.

Notice from Figure 11, that the output Y0 is active if one or more of X0/X1 are active, while one or more of X2/X3 is
simultaneously active.

Related Examples:

• Stack > AndBlock
• Stack > OrBlock
• Stack > PushPop

Page 20

States

The combination of states (discussed here), plus transitions and events (discussed in the next section) may be used
to create a wide variety of finite state machine (FSM) style systems. Supported types include: -

• PLC-style Sequential Function Charts (SFCs)
• Moore-style Finite State Machines (FSMs)
• Mealy-style FSMs
• Hierarchical FSMs

The State command is used to create a group of states, each of which may be enabled or disabled at start-up.

Note that States are often referred to as ‘Steps‘ in PLC-style SFCs, although these terms are broadly equivalent, as
far as plcLib functionality is concerned. A key feature of steps is that more than one step can be active at any time,
as in a parallel branch for example. In traditional FSMs, only one state can be active at any time. However, parallel
or orthogonal (independent) operation is permitted, in which each individual FSM would have one active state.

A further consideration is the sequential nature of microcontroller operations, in which each discrete task takes a
miniscule period of time. Thus, two events which appear to happen simultaneously, in fact take place one after
another, even if the difference between them is measured in microseconds. In simple terms, a plcLib-based system
is not truly synchronous, but approximates towards this ‘ideal’. Consider the SFC-style parallel branch of Figure 12
as an example.

Figure 12. An SFC style parallel branch.

The intended operation is that the system is initially in the START step (or state). Trigger event X0, which might be
a rising edge, causes a simultaneous transition to STEP1, STEP2 and STEP3, which also disables the START step. In
practice the microcontroller performs each task sequentially, so four separate sub-operations are involved.
Furthermore, the actions of updating outputs Y0 to Y3 are performed in sequence, although at high speed, hence
involving a further four sub-tasks. This might not matter in a traditional PLC, in which outputs may be updated
synchronously, once calculations are complete, at the end of the scan cycle. However, the plcLib library uses direct
output, while the Arduino-based system on which it runs uses bit-oriented digitalWrite commands to update
outputs. Hence, a limitation of plcLib-based FSMs is the potential for brief glitches to occur, as the microcontroller
performs each sub-task of a more complex operation, in sequence. This may not matter in systems where inputs
and outputs change at relatively low speeds, compared to the operating speed of the microcontroller, and the
presence of transitory signals is not a concern. However, potential users should carefully evaluate the suitability of
the plcLib system, before deciding to use it.

States are created as objects in both JavaScript and C++, as given in Tables 28 and 29, respectively.

Command Function Returns
StName23 = new State24(1/0); Create new State object StName, which

is either enabled (1) or disabled(0) at
startup.

Object StName created and
either enabled or disabled.

Table 28. Creating a new State object (JavaScript).

23 The label StName should be replaced with your State name.
24 States are created as objects in both JavaScript and C++.

Page 21

The syntax of Table 26 is automatically converted to that of Table 27 by the code generation feature of the Web-
based IDE.

Command Function Returns
State StName(1/0); Create new State object StName, which is

either enabled (1) or disabled(0) at
startup.

Object StName created and
either enabled or disabled.

Table 29. Creating a new State object (C++).

Available state-related methods are given in Table 30.

Method Action Returns
StName.active(); Reads the enabled / disabled value of the

state.
Returns 0 (state is
disabled) or 1 (state is
enabled). The scanValue
variable is also updated.

StName.enable(); Enables the state. State StName is enabled
and the .entry() method
returns true for the
remainder of the scan cycle.

StName.disable(); Disables the state State StName is disabled
and the .exit() method
returns true for the
remainder of the scan cycle.

StName.entry(); Returns 1 if the state has been enabled in
the current scan cycle, hence providing an
entry event for the state.

Returns 1 if state StName
has been entered during
the current scan cycle
(scanValue is also updated).

StName.exit(); Returns 1 if the state has been disabled in
the current scan cycle, hence providing an
exit event for the state.

Returns 1 if state StName
has been exited during the
current scan cycle
(scanValue is also updated).

StName.back(); Reverts to the previous state, if any. It is
equivalent to performing the previous
trans command in reverse.

Enables the previous state
(if any) and disables the
current state. Entry and exit
events are triggered.

Table 30. Available State-related methods.

An example is given in Listing 16. This implements a Sequential Function Chart (SFC) style system, having a switch
based parallel branch, followed by a converge.

// Parallel Switch Branch with Converge

 // Define state/step names & values

START = new State(1); // Start-up step (START = 1)

STEP1 = new State(0); // Other steps disabled (= 0)

STEP2 = new State(0);

STEP3 = new State(0);

 // Define Pulse object(s) for edge triggering

P0 = new Pulse(); // Edge detect on X0

P1 = new Pulse(); // Edge detect on X1

function setup() {

}

function loop() {

 // Read input(s)

Page 22

 din(X0);

 P0.inClock(); // Connect X0 to P0 Pulse

 din(X1);

 P1.inClock(); // Connect X1 to P1 Pulse

 // Do transitions

 P0.rising(); // Detect rising edge of X0 (or use 'din(P0);')

 trans(START, STEP1); // Transition START > STEP1

 STEP2.enable(); // Also enable STEP2

 P1.rising(); // Detect rising edge of X1 (or use 'din(P1);')

 trans(STEP1, STEP3); // Transition STEP1 > STEP3

 STEP2.disable(); // Also disable STEP2

 // Display current step

 din(START);

 dout(Y0); // Send to output Y0

 din(STEP1);

 dout(Y1); // Send to output Y1

 din(STEP2);

 dout(Y2); // Send to output Y2

 din(STEP3);

 dout(Y3); // Send to output Y3

}

Listing 16. A SFC style system, which implements a switch-based parallel branch and converge (Source: SFC >
ParallelSwitchBranchConverge).

A sample timing diagram is given in Figure 13, based on Listing 15.

Figure 13. A sample timing diagram for the switch-based parallel branch and converge of Listing 15.

The system starts in the START step . Pressing X0 causes STEP1 and STEP2 to be simultaneously enabled (a parallel
branch). Finally pressing X1, cancels STEP1 and STEP2, while enabling STEP3 (a parallel converge).

Related Examples:

A range of SFC-style examples are available, as shown below.

• SFC > ParallelSwitchBranch

• SFC > ParallelSwitchBranchConverge
• SFC > ParallelSwitchBranchDiscrete
• SFC > RepeatingSwitchSequence

• SFC > SelectiveSwitchBranch
• SFC > SelectiveSwitchBranchConverge
• SFC > SimpleSwitchSequence

• SFC > SimpleTimedSequence

See also the FSM folder and several examples from the Apps folder.

Page 23

Transitions and Events

The trans command causes a conditional transition from the source state to the destination state. For the
transition to take place, the source state must be currently enabled and the trans command must itself have been
enabled by the result of the preceding command sequence, via the scanValue variable. Table 31 gives the syntax of
the trans command.

Command Function Returns
trans(State125, State2); Conditionally enables State2 and disables

State1. For the transition to take place,
State1 must be enabled and the trans
command must itself be enabled by the
previous result, via scanValue.

Returns 1 if the transition
takes place and returns 0
otherwise (scanValue is
also updated).

Table 31. The trans command.

The trans command is level-based, by default, being enabled if the preceding command causes the scanValue
variable to be set and the source state is active. For example, the followed extract would enable STATE2, and
disable STATE1, if a switch connected to input X0 is either momentarily pressed, or held in the on position, while
STATE1 is simultaneously active.

din(X0);

trans(STATE1, STATE2);

Listing 17. A level-based transition will take place if X0 is enabled and STATE1 is active.

It is also possible to create edge-based transitions by combining the trans command with Pulse objects and their
rising/falling edge events. An example is given in Listing 18.

// Switch Sequence based on FSM with optional Timing Diagram

s1 = new State(1); // 1 = active at start

s2 = new State(0);

s3 = new State(0);

P0 = new Pulse(); // Pulse used for edge detection on X0

function setup() {

 logVars("X0", "X1", "X2", "s1", "s2", "s3"); // Variables for timing diagram

}

function loop()

{

 din(X0);

 P0.inClock(); // Link X0 input to P0 Pulse object

 P0.rising(); // Read rising edge of X0 - or use 'din(P0);'

 trans(s1, s2); // Transition from s1 and s2 using X0 rising edge

 P0.falling(); // Read falling edge of X0

 trans(s2, s1); // Transition from s2 and s1 using X0 falling edge

 din(X1);

 trans(s2, s3); // Move from s2 to s3 using X1 (level-based)

 din(X2);

 trans(s3, s2); // Move from s3 to s2 using X2 (level-based)

 din(s1); // Display active state on Y0 - Y2

 dout(Y0);

 din(s2);

 dout(Y1);

25 State1 and State2 should be replaced by your source and destination state names.

Page 24

 din(s3);

 dout(Y2);

 logVars(X0, X1, X2, s1, s2, s3); // log values to timing diagram

}

Listing 18. A switch-based FSM, using edge-based transitions (Source: FSM > SwitchSequenceWithTimingDiagram).

A sample timing diagram is given in Figure 14, which was created using the logVars commands of Listing 17. (See
the next section for more details.)

Figure 14. A sample timing diagram based on the FSM example of Listing 17.

The above timing diagram confirms that the system starts in state s1, based on the initial state definitions. The
rising edge of X0 is used to trigger the transition from s1 to s2, while the falling edge of X0 causes the final
transition from s2 to s3.

In general, edge-based transitions tend to be effective for events which occur at a precise instant, such as button
presses. Level-based transitions are useful with signals which have alternative values, such as a temperature
threshold sensor, for example. Careful system design is needed in either case, to ensure that FSMs behave as
expected under all possible circumstances. A common issue with level-based systems is the rapid and unexpected
triggering of multiple transitions. The likelihood of this problem is reduced in event-based systems, but not
completely eliminated. Note that the pulse.expired() method may be used to clear a rising or falling edge event
for the remainder of the scan cycle, hence preventing unwanted duplicate triggering of subsequent commands.

As well as events being used to trigger transitions between states, additional events are also triggered when a state
is either enabled or disabled. As their names suggest, an entry event is triggered when a state becomes active,
while an exit event occurs when a state is disabled, each of which lasts for a single scan cycle. These events are
typically used to perform ‘tidy up’ operations, or to display debugging information, as shown in the JavaScript
extract of Listing 19.

Page 25

 // Print debugging information to Console

 // (Enable Developer Tools in browser or

 // open Serial Monitor in Arduino IDE.)

 if(DISABLED.entry()) {

 console.log("Entering DISABLED state");

 }

 if(DISABLED.exit()) {

 console.log("Leaving DISABLED state");

 }

 if(HEATING.entry()) {

 console.log("Entering HEATING state");

 }

 if(HEATING.exit()) {

 console.log("Leaving HEATING state");

 }

 if(IDLE.entry()) {

 console.log("Entering IDLE state");

 }

 if(IDLE.exit()) {

 console.log("Leaving IDLE state");

 }

Listing 19. Using entry and exit events to display state-based debugging information (Source based on: FSM >
OvenControlMooreDebug).

Related Examples:

A range of FSM examples is available in the FSM folder, demonstrating the creation of Moore, Mealy and
hierarchical style FSMs.

• FSM > OvenControlHierarchical
• FSM > OvenControlHierarchicalDebug
• FSM > OvenControlMealy

• FSM > OvenControlMealyDebug
• FSM > OvenControlMoore

• FSM > OvenControlMooreDebug

• FSM > Alarm

• FSM > AlarmArmed
• FSM > AlarmArmedTimeout
• FSM > AlarmArmedTimeoutIsolate
• FSM > SwitchSequenceWithTimingDiagram

• FSM > RobotWalkPauseResume

See the SFC folder listed earlier, for PLC-style examples, and also the Apps folder, for state-based applications.

Page 26

Timing Diagrams (JavaScript only)

The logVars command may be used to create timing diagrams, based on the current inputs, outputs or auxiliary
variables. This feature is available in JavaScript only. The logVars command must occur twice in the listing, with
slightly differing syntax, as shown in Table 30.

Command Function Returns
logVars(“entity1”,
(“entity2”, …);

First occurrence in the setup function enables
data logging for the named entities (with
double quotes).

logVars(entity1,
(entity2, …);

Second occurrence in the loop function records
data for each of the specified entities (without
double quotes).

Table 32. The logVars command.

As an example, the extract of Listing 20 illustrates how the logVars command was added to the earlier example,
allowing generation of the timing diagram previously seen in Figure 13.

function setup() {

 logVars("X0", "X1", "X2", "s1", "s2", "s3"); // Variables for timing diagram

}

…
 din(s3);

 dout(Y2);

 logVars(X0, X1, X2, s1, s2, s3); // log values to timing diagram

}

Listing 20. Using the logVars command to gather data for subsequent display of a timing diagram (Source adapted
from: FSM > SwitchSequenceWithTimingDiagram).

In order to generate the timing diagram, the recommended sequence is.

1. Press Stop to clear any previous logging data.
2. Press Run
3. Quickly activate the correct input sequence, as required to generate the signal timing.
4. Press Stop
5. Select Actions > Display timing diagram (after Run / Stop)

Please note that any timing diagrams generated will be an approximation to the actual timing of signals. Hence,
these should not be relied on as being accurate, for measurement purposes, or for determination of the precise
sequence of events. This is due to the repeating nature of the PLC scan cycle, combined with the finite sampling
rate of the logVars command.

Default Settings and Configuration Options
The following sections contain information which will be useful if you need to understand, or change the
configuration of the JavaScript-based IDE, or the associated C++ library.

JavaScript IDE and Simulator

The JavaScript-based Integrated Development Environment (IDE) and simulator is available from
https://plclib.org/live/.

It may in future be possible to download and install your own copy – onto a locally running webserver (localhost)
for example. This option may be of interest if you intend to customise or extend the library, or if you require your
own exclusive copy. However, detailed instructions related to the installation and configuration of your own copy
are beyond the scope of this guide.

https://plclib.org/live/

Page 27

Installation of C++ Library

The C++ library should be installed onto the Arduino IDE prior to attempting to compile and download code to an
actual target system. Please follow instructions associated with your Arduino IDE to install the library.

Default Pin Allocations

Default pin allocations and associated configuration settings are automatically generated for supported hardware,
once this has been selected via the Select Target System drop down list and then the Generate code & copy to
clipboard button is pressed. Any ‘custom’ pin configuration information will then appear in the Target Code editor
window.

In the case of the first option on the list, which is Arduino Uno (default), no custom code is generated. Instead, the
library uses pre-defined settings in the setupPLC function, as found in the ‘plcLib.cpp’ file. By default, this sets pins
X0-X3 to be inputs, sets pins Y0-Y3 to be outputs and configures the initial value of pins Y0-Y3 to be low, where low
is assumed to correspond to ‘off’. Mappings between pin names and pin numbers are found in the ‘plcLib.h’ file. For
example, the line starting const int X0 = 7; allocates input X0 to pin 7 on the Arduino Uno, while the line
pinMode(X0, INPUT); from plcLib.cpp configures X0 as an input. The setupPLC function is itself invoked by being
placed inside the setup function in the Target Code (C++) editor window, as shown in Figure 15.

Figure 15. Default pin configurations settings, which include use of the setupPLC function.

Custom Pin Configurations

Selecting an option other than Arduino Uno (default) in the Select Target System drop-down list will cause custom
I/O allocations to be generated when the Generate code & copy to clipboard button is pressed. The #define
noPinDefs command is automatically created on the first line of the resulting code, within the Target Code (C++)
editor window, as shown in Figure 16.

Figure 16. Custom pin configuration, which makes use of the noPinDefs setting.

Page 28

The noPinDefs directive, causes the C++ compiler to ignore previously defined pin allocations, associated with the
setupPLC function. These are then replaced by explicit pin allocation declarations, as shown in Figure 15 above.
This is then followed by a customIO function definition which is then called from within the setup function, hence
configuring pin directions, as shown in Figure 17.

Figure 17. Configuring pin directions from within the customIO function.

Default pin mappings are given in Table 33, for currently supported hardware.

Selected Hardware Digital
Inputs

Digital
Outputs

Analogue
Inputs

Notes

Arduino Uno (default)

X0 -> 7
X1 -> 8

X2 -> A2
X3 -> A3

Y0 -> 2
Y1 -> 3
Y2 -> 4
Y3 -> 5

AD0 -> A0
AD1 -> A1

Arduino Uno (Grove
Shield)

X0 -> 7
X1 -> 8

X2 -> A2
X3 -> A3

Y0 -> 3
Y1 -> 4
Y2 -> 5
Y3 -> 6

AD0 -> A0
AD1 -> A1

Outputs Y0, Y2 and Y3 are PWM-capable, but
not Y1.

Arduino Uno
(Multifunction Shield)

X0 -> A1
X1 -> A2
X2 -> A3
X3 -> 5

Y0 -> 10
Y1 -> 11
Y2 -> 12
Y3 -> 13

AD0 -> A0
AD1 -> A5

Built-in switches and LEDs are active low.
(During testing, an external Grove push-
button was connected to pin 5, while a
Grove potentiometer was connected to pin
A5.)

Arduino MKR (Grove
Carrier)

X0 -> A2
X1 -> A3
X2 -> A4
X3 -> A5

Y0 -> 0
Y1 -> 1
Y2 -> 2
Y3 -> 3

AD0 -> A0
AD1 -> A1

Arduino Mega / Mega
2560 (Grove Carrier)

X0 -> A8

X1 -> A10
X2 -> A12
X3 -> A14

Y0 -> 8
Y1 -> 6
Y2 -> 4
Y3 -> 2

AD0 -> A0
AD1 -> A2

Page 29

Adafruit M0 (Grove
Shield FeatherWing)

X0 -> A2
X1 -> A3
X2 -> A4
X3 -> A5

Y0 -> 5
Y1 -> 6
Y2 -> 9

Y3 -> 10

AD0 -> A0
AD1 -> A1

A3 = 2nd pin on A2 connector
A5 = 2nd pin on A4 connector
(Grove pins differ from Feather pins)
Y0 connected to Grove D2
Y1 = 2nd pin on D2 connector
Y2 connected to Grove D4
Y3 = 2nd pin on Grove D4 connector

Maker Pi Pico Base

X0 -> 20
X1 -> 21
X2 -> 22
X3 -> 1

X4 -> 0
X5 -> 3
X6 -> 2

Y0 -> 7
Y1 -> 6
Y2 -> 9
Y3 -> 8

AD0 -> 27
AD1 -> 26

X0-X2 are built-in push buttons (active low)
X3 connected to Grove 1, 1st pin
X4 (additional) connected to Grove 1, 2nd pin
X5 (additional) connected to Grove 1, 1st pin
X6 (additional) connected to Grove 2, 2nd pin
Grove 3 is intended for I2C devices
Y0 connected to Grove 4, 1st pin
Y1 connected to Grove 4, 2nd pin
Y2 connected to Grove 5, 1st pin
Y3 connected to Grove 5, 2nd pin
AD0 connected to Grove 6, 1st pin
AD1 connected to Grove 6, 2nd pin

Table 33. Default pin mappings for supported hardware.

It is relatively straightforward to modify one of the above custom hardware configurations, in the event that a
different hardware configuration is required to those directly supported. Possibilities include adding additional
pins, changing default pin mappings, or even testing the library with new hardware platforms or microcontrollers.

Consider using dual input/output modules, where access to the second pin on a Grove connector is required. (Dual
port devices from the M5Stack range were used during testing.)

Positive and Negative Logic

The C++ version of the library supports inputs and outputs which use either positive logic or negative logic, and
each type may be separately configured. In positive logic, an active input or output will correspond to a high
voltage level. Conversely, in negative logic, a low voltage level is associated with an active input or output. Which
setting is correct will depend on the connected hardware. Figure 18 gives examples of the four possible
combinations of active low inputs and outputs. (These circuits are slightly simplified for clarity.)

Page 30

Figure 18. Examples of positive and negative logic input and output circuits.

The active low input at the upper left consists of a pull-up resistor R1, plus a push button switch SW1. With no
switch pressed, the pull-up resistor causes the input to read ‘high’. Pressing SW1 overrides the pull-up resistor and
forces the input low. Logic levels are reversed in the input circuit at the lower left, with R3 acting as a weak pull-
down resistor, which is overridden by pressing switch SW2.

LED D1 at the upper right has its positive (anode) terminal connected to the positive power supply, and is
illuminated when its cathode is pulled low via current limiting resistor R2 – hence this is an active low output.
Conversely LED D2 at the lower right is illuminated by an active high digital output.

Positive or negative logic inputs and/or outputs may be separately configured to suit the connected hardware, by
editing the relevant section of the plcLib.cpp file, as shown in Figure 19 below.

Figure 19. Enabling or disabling positive / negative logic inputs and outputs.

Recommended polarity settings for supported hardware and default I/O devices are shown in Table 34.

Selected Hardware Inputs Outputs Notes
Arduino Uno (default)

Positive

Positive

Arduino Uno (Grove Shield)

Positive

Positive

Arduino Uno (Multifunction
Shield)

Negative

Negative

Built-in switches and LEDs are active low. (A
fourth input switch may be externally connected
via headers, as can a second analogue input
potentiometer.)

Page 31

Arduino MKR (Grove Carrier)

Positive

Positive

Arduino Mega / Mega 2560
(Grove Carrier)

Positive

Positive

Adafruit M0 (Grove Shield
FeatherWing)

Negative

Positive

Dual port I/O modules are recommended, due to
limited connector availability. (During testing, a
pair of active low M5Stack Mini Dual Button Units
was connected to the inputs, while a pair of
M5Stack 2-Channel SPST Relay Units was
connected to outputs.)

Maker Pi Pico Base

Negative

Positive

Built-in switches connected to X0-X2 are active
low, so it is recommended to enable active low
inputs.
Some inputs and outputs use the second Grove
connection. (During testing, a pair of active low
M5Stack Mini Dual Button Units was connected to
additional digital inputs (active low), a pair of
M5Stack 2-Channel SPST Relay Units was
connected to digital outputs (active high) and a
Grove Joystick was connected to the dual analogue
inputs.)
Connector Grove3 is recommended to be used
with I2C devices (e.g. keypad, LCD).

Table 34. Recommended polarity settings for I/O devices.

Loading a Sketch at Startup

The sample sketch is loaded in the editor window, by default. An alternative file may be loaded by specifying the
sample path and filename in the URL, as shown in the following examples.

Relative path: - https://plclib.org/live/?url=examples/Latch/LatchCommand.txt

Absolute path: - https://plclib.org/live/?url=/live/examples/Latch/LatchCommand.txt

Notice in the first example a relative URL is given, starting at the current web folder (so ‘/live/’ is assumed).
However, in the second example, the sample file URL begins with a ‘/’, so the full path from the web-root must be
given.

https://plclib.org/live/?url=examples/Latch/LatchCommand.txt
https://plclib.org/live/?url=/live/examples/Latch/LatchCommand.txt

Page 32

Program Features
The following sections describe a number of program features, which have not been covered in preceding sections.
This includes the internal operation method of the system (the scan cycle), methods of debugging sketches, and
how to load or save your own sketches.

Scan Cycle Operation.

The plcLib software operates by repeatedly reading inputs, performing calculations, and then sending the results
to outputs. This process is known as the scan cycle. A typical ladder diagram-based application is 'scanned' one
rung at a time, from left to right, starting at the top and working progressively downwards. This process repeats
continuously, as shown in Figure 20.

Figure 20. The scan cycle includes the repeated process of reading inputs and updating outputs.

Each rung of the ladder may be thought of as a parallel process, which receives its own share of the processor time
as the scan cycle repeatedly executes. Hence PLC-style applications demonstrate simple parallel processing
capabilities, but without the need to resort to advanced programming techniques.

For basic operation, the PLC library uses a single variable called scanValue to hold its running calculation result, as
each branch is solved. Consider the C++ code snippet of Listing 21, to see how this works for single bit digital
values.

function loop() {

 din(X0); // Read digital input X0

 dout(Y0); // Send to digital output Y0

}

Listing 21. Reading a digital input and updating a digital output in a continuous loop (Source adapted from: IO >
BareMinimum).

The single bit input command din(X0); reads digital input pin X0 and stores its result in the scanValue variable as
1 or 0. A subsequent bit output command dout(Y0); simply reads the scanValue variable and sends this value to
digital output pin Y0. This process repeats as each rung of the ladder diagram is calculated, with scanValue
repeatedly initialised, updated and then discarded as the ladder logic program executes.

The process is similar for an analogue input, which is read from an analogue to digital converter as a 10-bit value in
the range 0-1023 using the ain command – as illustrated by the C++ code snippet of Listing 22.

function loop() {

 ain(AD0); // Read analogue input AD0

 pout(Y0); // Send to output Y0 as PWM waveform

}

Listing 22. Reading an analogue input value from pin AD0 (A0) and sending to a PWM output (Source adapted from:
IO > PWM).

Page 33

The same scanValue variable is used to hold this analogue value, which is not a problem as the scanValue variable is
actually a 32-bit unsigned integer variable type. The plcLib software automatically handles the scaling of any
pseudo analogue outputs, so the PWM output of the pout command in Listing 20 above, is scaled to be in the range
0-255 (8-bit binary). In this case, the PWM output may be used to control the apparent brightness of a connected
LED, or even (via power amplification) the speed of a connected DC motor.

It is also possible to scale the current scanValue in any desired range. For example, a hobby servo may require an
angular position in the range 0-179 (hence a span of 180). This scaling may be achieved using the Arduino map
command, as shown in the Extras > Servo example. (This example also illustrates how plcLib can interface with
external libraries.)

Note: The PLC library can also perform greater than or less than comparisons based on analogue values, as was
discussed earlier in the Analogue Comparison section. (See also the Analogue section of the pull-down menu for
related examples.)

Finally, the scan cycle of the plcLib software, together with its internal operation, is somewhat simpler than that of
a commercial PLC. It is useful to appreciate these differences and any potential implications on system design,
performance and reliability. These characteristics are summarised in Table 35.

Feature plcLib Typical PLC
Number of Programme

Organisation Units (POUs)
One Multiple

Number of ‘languages’ directly
supported

One (C++ on target system) Five (LD, IL, FBD, SFC, ST)

Operating Speed Processing speed of CPU Regular Event Scheduled
Inputs Direct or buffered Buffered

Outputs Direct or buffered Buffered
3rd party libraries and directly
connected additional devices

Yes No

Table 35. Comparing plcLib and PLC scan cycle characteristics.

A fully featured commercial PLC might be programmable in several ‘languages’ (ladder diagram, Instruction List,
Function Block Diagram, Sequential Function Chart, Structured Text) and these sub-programs may be attached to
one or more ‘events’ which cause them to be executed on a regular basis, under the control of a scheduler. A
combination of local and global variables allows proper execution of each program unit and communication
between them. The plcLib library on the other hand operates as a single Arduino sketch, in a single programming
language (C++) and this compiled program executes at the maximum speed permitted by the processor. Any local
or global variables are also held within this single Arduino sketch.

Considering input/output arrangements, a commercial PLC will read all inputs into associated variables at the start
of the scan cycle, and then perform any calculations on variable values held in the memory of the PLC. Output
values are then updated at the end of the scan cycle. The plcLib library uses direct input and output, by default, and
the decision whether to read and write values via buffer variables is at the discretion of the user. Which option is
best may also depend on the application, which for plcLib is likely to be a ‘product-related’ question. In some
situations, the fastest possible response may be required, which could come from a system which ‘polls’ inputs at
maximum CPU speed, or even from an interrupt-driven system. On the other hand, an application such as a Set-
Reset latch, implemented in plcLib using direct I/O, might give unwanted oscillation or ambiguous behaviour if the
Set and Reset inputs are simultaneously applied, or a connected switch becomes stuck in the on position. (For more
details, please see discussion of latches in the User Guide, and associated implementation options, including direct
output via setL and resetL commands, indirect output via a buffer variable, or use of one-shot pulses.)

The plcLib library is intended to be capable of operating in conjunction with 3rd party libraries and directly or
remotely connected devices, which is likely to be a requirement in a microcontroller-based product. For example,
the connection of a servo or LCD display requires the installation of the related library, together with the inclusion
of device-related commands. This is achieved through escape sequences, which cause 3rd party code to be ignored

Page 34

by the JavaScript editor and simulator, but executed normally by the embedded system itself. (Please see examples
in the Extras pull-down menu, plus associated discussion in the User Guide and Reference Manual.)

Debugging Sketches

A variety of debugging options are available, both in the JavaScript-based editor and in the Arduino-IDE. The
JavaScript editor has colour coded syntax highlighting which will flag any ‘typos’ at the earliest possible stage. The
editor will also generate an error message at the bottom of the editor window, if a syntax error is detected, when
Run is pressed.

Figure 21. Syntax-based highlighting and debugging in the JavaScript IDE.

Having got past any obvious syntax errors, then next stage may be to identify logical errors in your code. A useful
option is to insert one or more console.log commands into the sketch, given that the underlying programming
language is JavaScript, as used in the Simulator Code window. This may be used to display the value of program
variables via the Developer Tools > Console feature of your web browser (precise details of which will vary
depending on the browser used). A simple example of the process is given in Figure 22.

Figure 22. Debugging a JavaScript-based sketch, which is running in the Simulator Code window.

The system automatically generates the equivalent Arduino serial interface debugging commands, when the
Generate code and copy to clipboard button is pressed, as shown in Figure 23.

Page 35

Figure 23. Using Serial debugging features in the Arduino IDE.

Notice from Figure 22, that the serial interface is automatically initialised, and a default baud rate set. Any
console.log commands from the JavaScript version are automatically converted to their equivalent
Serial.println command equivalents. The value of any monitored variables may then be displayed in the Serial
Monitor window. An optional delay may be added to the Arduino sketch, should it be necessary to temporarily slow
the speed of the system, for debugging purposes.

Additional debugging options may be available in the Arduino IDE itself, from Version 2.0 onwards, but this is
beyond the scope of this manual.

Loading and Saving User Sketches

It is possible to load and save your own files, in addition to using the pre-created examples. However, there are
some slight restrictions, which relate to the use of a browser-based system.

Opening a local file is a two-stage process. Firstly, select the file to be loaded by clicking the Browse… button and
then using the dialogue box to select the file. Secondly, Click the Load selected local file option from the Actions pull-
down menu. This is illustrated by Figure 24.

Figure 24. Selecting and loading a local file.

Page 36

You can also save the contents of the Simulator Code window as a local file, although you are restricted to saving to
the Downloads folder, for security reasons. Once again, this is a two-stage process. Firstly, enter the desired
filename in the Local filename to save text box. Secondly, select the Save selected file to Downloads option from the
Actions pull-down menu. This is illustrated by Figure 25.

Figure 25. Saving to the Downloads folder as a local file.

Extending the System
A number of options are available, should you decide to extend the system, as described in the following sections.

Adding C++ Specific Code in the JavaScript IDE

The //$ escape sequence may be used to include code which is intended for the C++ environment, but which
should be ignored by the JavaScript simulator. A typical scenario would be the inclusion of code associated with
additional hardware, such as a servo or LCD display. As an example, Listing 23 shows the linkage of an analogue
input and a servo output, with all servo-related code being temporarily hidden by escape sequences.

// Potentiometer and Servo

//$#include <Servo.h> // Load servo library

//$Servo myServo; // Create servo object

function setup() {

 //$ myServo.attach(Y0); // Attach servo to pin Y0

}

function loop() {

 ain(AD0); // Read potentiometer connected to Analogue input AD0

 //$scanValue = map(scanValue, 0, 1023, 0, 180); // Scale ADC value to use with servo (0 - 180 degrees)

 //$myServo.write(scanValue); // Write to servo

 // delay(2); // Optional 2-40 ms delay

}

Listing 23. Using ‘//$’ escape sequences to exclude servo-specific code from the JavaScript simulator.

Related Examples:

A range of examples is available in the Extras folder, demonstrating the connection of additional hardware, or use
of target-specific features not directly supported by the simulator.

• Extras > Servo
• Extras > CountUpDownLCD

• Extras > OvenControlMooreLCD

Page 37

Adding New Features

Users are free to add new features, for their own use, or to share with the wider community. Options include: -

• adding new functionality via custom C++ functions,
• testing and integrating 3rd party libraries,
• creating new function blocks,
• adding support for new hardware.

These are listed above in approximate order of difficulty, from simple to complex.

A simple C++ function, for example, could consist of a few lines of code, plus a demonstration sketch and brief
commentary on what it does and how it is used. 3rd party libraries already exist, so the first task is to thoroughly
test the library with plcLib, identify potential use cases, then develop some test sketches and documentation. In
either case, it is important to identify any limitations of the new system or feature. For example, if you decided to
interface an ultrasonic distance sensor to a plcLib-based application, you would probably start by using the built-in
Arduino pulseIn function to measure the elapsed time of the return pulse. However, pulseIn is a ‘blocking’
function (just like delay), so it will slow down the associated scan loop! The pulseIn function has an optional
timeout parameter, so there is a trade-off between the choice of timeout, the maximum distance measured (based
on the speed of sound) and the slowest allowed speed of execution of the scan loop. A question is therefore
whether the resulting scan loop speed would still be fast enough for the application? For a maze solving robot, the
answer might be ‘yes’, but for a more time-critical application, the answer might be ‘no’. If performance is an issue,
due to the blocking behaviour of pulseIn, an alternative approach might be to develop a non-blocking equivalent.
This may be more challenging in the short term, but would be likely to give better performance in the long run.

A new plcLib function block, is conceptually like a subroutine, which accepts a number of parameters and returns a
result to the associated object/variable. A good first step is to study existing function blocks and understand how
they work. One of the challenges in C++ is to produce code which will work with the range of parameter types that
plcLib supports. For example, an argument may be supplied to a function block as either an integer number (0, 1,
1023 etc.), indirectly via a pin number (from where a value should be read), or may even be obtained from another
object. C++ can achieve this flexibility through function overloading (where multiple versions of a function are
written, to cope with each eventuality), or via templates (where the parameter type is identified at a later stage by
the compiler). The latter is the approach used in plcLib (mostly), however this is an advanced topic, explanation of
which is beyond the scope of the current document. Once a C++ function block has been written, by whatever
means, the process of adding it to the plcLib system (if this has been agreed), consists of several further steps.
Firstly, a functionally equivalent JavaScript function block must be added to the JavaScript library and tested.
Secondly, syntax/keyword highlighting options need to be added to both the webpage editor and the Arduino IDE,
so the new function block command(s) will be correctly highlighted. Next, one or more example sketches should be
added, to demonstrate the new feature, and finally the user documentation must be updated.

When adding support for a new hardware platform, a key consideration is whether it can support the basic I/O
model used by plcLib (4 digital inputs X0-X3, 2 analogue inputs AD0-AD1, 4 digital outputs Y0-Y3). In addition, how
will users connect inputs and outputs, and what types of I/O are supported? Does it support Grove devices for
example, or an equivalent hardware prototyping technology? Can outputs generate both digital signals and also
PWM? If the answer to any of these questions is ‘no’ or ‘only partially’, this may mean that some of the built-in
examples will not work. Assuming that a hardware platform passes these initial tests, then adding it to the main
system (if agreed) will consist of several further steps, such as adding a thumbnail image to the simulator, plus an
associated custom I/O allocation for the Target Code (C++) editor window.

Whatever option you choose, the importance of thorough testing, development of test/demonstration sketches and
production of documentation cannot be overemphasised. This is a marathon rather than a sprint! Please do get in
touch if you develop a new feature which you would be willing to share.

Page 38

Licensing and Disclaimer
The website, Web IDE, simulator and associated Arduino library files are provided for educational and academic
research purposes only.

The plcLib library and related source code files are released under a permissive MIT licence, but do not come with
any kind of warranty, and are used entirely at your own risk. Please open library source code files in a text editor to
view associated licensing information.

A screenshot of the C++ licence statement is reproduced below, for information.

Figure 26. C++ plcLib software is licensed under a permissive MIT licence.

Earlier versions of the C++ library (0.5 – 1.4) were released under the GNU GPL, but this changes to MIT for
Version 2.0 and beyond. The JavaScript version of the plcLib library is also released under the same MIT licence,
but Version 2.0 is the first public release.

Acknowledgements
This Web-based editor, simulator and associated library makes use of a number of advanced technologies which
have been generously shared by their creators, in line with their respective licensing agreements. This includes: -

• ACE Editor, which is released under the BSD licence.
• Bootstrap, which is released under the MIT licence.
• Plotly.js, which is released under the MIT licence.

